

Hilti HIT-RE 500 V3 mortar with HIS-(R)N sleeve

Injection mortar system		Benefits
	Hilti HIT-RE V3 500 330 ml, 500 ml and 1400 ml foil	 SAFEset technology: Hilti hollow drill bit for hammer drilling and roughening tool for diamond drilling
IIII HIT-RE 500 V3 HIRI HIT-RE 500 V3 HIRI HIT-RE 500 V3	pack	 suitable for cracked/non-cracked concrete C 20/25 to C 50/60
		 high loading capacity
	Static mixer	 suitable for dry and water saturated concrete
		- under water application
		- high corrosion resistance
	HIS-(R)N sleeve	 long working time at elevated temperatures
		- odourless epoxy

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European Technical Assessment	CSBT	ETA-16/0143 / 2016-07-28
		7.00

a) All data given in this section according to ETA-16/0143, issue 2016-07-28.

Seismic resistance (for a single anchor)

All data in this section applies to:

- Correct setting (See setting instruction with hammer drilling)
- No edge distance and spacing influence
- Steel failure
- Screw strength class 8.8
- Minimum base material thickness
- Concrete C 20/25, $f_{ck,cube} = 25 \text{ N/mm}^2$
- Temperature range I (min. base material temperature -40°C, max. long/short term base material temperature: +24°C/40°C)
- Installation temperature range +5°C to +40°C
- $\alpha_{gap} = 1,0$ (using Seismic/Filling set)

Effective anchorage depth for seismic C1

Anchor size			M8	M10	M12	M16	M20
Eff. Anchorage depth	h _{ef}	[mm]	90	110	125	170	205

Characteristic resistance in case of seismic performance category C1

Anchor size			M8	M10	M12	M16	M20
Tensile N _{Rk,seis}	HIS-(R)N	[kN]	25,0	35,3	42,8	67,8	89,8
Shear V _{Rk,seis}	HIS-(R)N	[kN]	9,0	16,0	27,0	44,0	41,0

Design resistance in case of seismic performance category C1

Anchor size			M8	M10	M12	M16	M20
Tensile N _{Rd,seis}	HIS-(R)N	[kN]	16,7	23,5	28,5	45,2	59,9
Shear V _{Rd,seis}	HIS-(R)N	[kN]	7,2	12,8	19,2	35,2	32,8

Static resistance (for a single anchor)

All data in this section applies to:

- Correct setting (See setting instruction with hammer drilling)
- No edge distance and spacing influence
- Steel failure
- Screw strength class 8.8
- Minimum base material thickness
- Concrete C 20/25, fck,cube = 25 N/mm²
- Temperature range I (min. base material temperature -40°C, max. long/short term base material temperature: +24°C/40°C)
- Installation temperature range +5°C to +40°C

Effective anchorage depth for static

Anchor size		M8	M10	M12	M16	M20
Eff. Anchorage depth	h _{ef} [mm]	90	110	125	170	205

Characteristic resistance in case of static performance

Anchor size			M8	M10	M12	M16	M20
Non cracked	concrete						
Tensile N _{Rk}	HIS-(R)N	[kN]	25,0	46,0	67,0	111,9	116,0
Shear V_{Rk}	HIS-(R)N	[kN]	13,0	23,0	34,0	63,0	58,0
Cracked con	crete						
Tensile N _{Rk}	HIS-(R)N	[kN]	25,0	41,5	50,3	79,8	105,7
Shear V _{Rk}	HIS-(R)N	[kN]	13,0	23,0	34,0	63,0	58,0

Design resistance in case of static performance

Anchor size			M8	M10	M12	M16	M20
Non cracked	concrete						
Tensile N _{Rd}	HIS-(R)N	[kN]	16,7	30,7	44,7	74,6	77,3
Shear V_{Rd}	HIS-(R)N	[kN]	10,4	18,4	27,2	50,4	46,4
Cracked con	crete						
Tensile N _{Rd}	HIS-(R)N	[kN]	16,7	27,7	33,5	53,2	70,4
Shear V _{Rd}	HIS-(R)N	[kN]	10,4	18,4	27,2	50,4	46,4

Materials

Mechanical properties

Anchor size			M8	M10	M12	M16	M20
	HIS-N		490	490	460	460	460
Nominal tensile	Screw 8.8	_ _ [N/mm²]	800	800	800	800	800
strength fuk	HIS-RN	- [[\/]]]]	700	700	700	700	700
ou ongai nak	Screw A4-70	_	700	700	700	700	700
	HIS-N		410	410	375	375	375
Yield	Screw 8.8	_ _ [N/mm²]	640	640	640	640	640
strength fyk	HIS-RN	- [[N/1111-]	350	350	350	350	350
	Screw A4-70	_	450	450	450	450	450
Stressed	HIS-(R)N	[mm2]	51,5	108,0	169,1	256,1	237,6
cross- section As	Screw	– [mm²]	36,6	58	84,3	157	245
Moment of	HIS-(R)N	[mm3]	145	430	840	1595	1543
resistance W	Screw	— [mm³]	31,2	62,3	109	277	541

Material quality

Part	Material
internally threaded sleeves ^{a)} HIS-N	C-steel 1.0718, steel galvanized $\ge 5\mu m$
internally threaded sleeves ^{b)} HIS-RN	stainless steel 1.4401 and 1.4571

a) related fastening screw: strength class 8.8, A5 > 8% Ductile steel galvanized $\geq 5 \mu m$

b) related fastening screw: strength class 70, A5 > 8% Ductile stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362

Service temperature range

Hilti HIT-RE 500 V3 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C
Temperature range II	-43 °C to +70 °C	+43 °C	+70 °C

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Setting

Installation equipment

Anchor size	M8	M10	M12 M16 M20		
Rotary hammer	TE 2 –	TE 16	TE 40 – TE 70		
Other tools	compressed air gun or blow out pump, set of cleaning brushes, dispenser				

a) For anchors in diamond drilled holes load values for combined pull-out and concrete cone resistance have to be reduced (see section "Setting instruction")

Setting instructions

Bore hole drilling

a) Hilti hollow drill bit	For dry and wet concrete only
	Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling system removes the dust and cleans the bore hole during drilling when used in accordance with the user's manual. After drilling is complete, proceed to the "injection preparation" step in the instructions for use.
b) Hammer drilling	Dry or wet concrete and installation in flooded holes (no sea water)
	Drill Hole to the required embedment depth with a hammer drill set in rotation- hammer mode using an appropriately sized carbide drill bit.
c) Diamond coring	For dry and wet concrete only
	Diamond coring is permissible when diamond core drilling machine and the corresponding core bit are used.

troughen	Diamond coring is permissible when suitable diamond core drilling machines and the corresponding core bits are used. Before roughening the borehole needs to be dry. Check usability of the roughening tool with the wear gauge RTG. Roughen the borehole over the whole length to the required hef.
Bore hole cleaning	Just before setting an anchor, the bore hole must be free of dust and debris.
a) Compressed air cleaning CAC	For bore hole diameters $d_0 \le 20$ mm and bore hole depth $h_0 \le 20$ d or $h_0 \le 250$ mm (d = diameter of element)
	The Hilti manual pump may be used for blowing out bore holes up to diameters $d_0 \le 20$ mm and embedment depths up to $h_{ef} \le 10d$. Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust
2x Dist	Brush 4 times with the specified brush size (brush diameter ≥ bore hole) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole - if not the brush is too small and must be replaced with the proper brush diameter.

b) Cleaning of hammer drilled For all bore hole diameters d_0 and all bore hole depth h_0 holes and diamond cored holes

	Flush 2 times the hole by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.
	Brush 2 times with the specified brush size by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole - if not the brush is too small and must be replaced with the proper brush diameter.
	Flush again 2 times the hole by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.
≥2x 6 bar/ 90 psi	Blow 2 times from the back of the hole (if needed with nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until return air stream is free of noticeable dust and water.
	Bore hole diameter \ge 32 mm the compressor must supply a minimum air flow of 140 m ³ /hour.

2x	Brush 2 times with the specified brush size by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole - if not the brush is too small and must be replaced with the proper brush diameter.
≥2x 6 bar/ 90 psi	Blow again with compressed air 2 times until return air stream is free of noticeable dust and water.
c) Cleaning of diamond cored holes followed by roughening	For all drill hole diameters do and all drill hole depths ho.
	Flush 2 times by inserting a water hose (water-line pressure) to the back of the hole until water runs clear.
	Brush 2 times with the specified brush (see Table B7) by inserting the steel brush Hilti HIT-RB to the back of the hole (if needed with extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the drill hole (brush $\emptyset \ge$ drill hole \emptyset) - if not the brush is too small and must be replaced with the proper brush diameter.
≥2x 6 bar/ 90 psi	Blow 2 times from the back of the hole (if needed with nozzle extension) over the whole length with oil-free compressed air (min. 6 bar at 6 m ³ /h) until return air stream is free of noticeable dust and water. For drill hole diameters \geq 32 mm the compressor has to supply a minimum air flow of 140 m ³ /h.
Injection preparation	
	Tightly attach new Hilti mixing nozzle HIT-RE-M to foil pack manifold (snug fit). Do not modify the mixing nozzle. Observe the instruction for use of the dispenser and mortar. Check foil pack holder for proper function. Do not use damaged foil packs / holders. Insert foil pack into foil pack holder and put holder into HIT-dispenser.
	The foil pack opens automatically as dispensing is initiated. Discard initial adhesive. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. Discard quantities are: 2 strokes for 330 ml foil pack, 3 strokes for 500 ml foil pack, 65 ml for 1400 ml foil pack.
Inject adhesive	From the back of the drill hole without forming air voids
	Inject the adhesive starting at the back of the hole, slowly withdrawing the mixer with each trigger pull. Fill holes approximately 2/3 full. It is required that the annular gap between the anchor and the concrete is completely filled with adhesive along the embedment length.

	After injection is completed, depressurize the dispenser by pressing the release trigger. This will prevent further adhesive discharge from the mixer.
	Overhead installation and/or installation with embedment depth h_{ef} > 250mm. For overhead installation the injection is only possible with the aid of extensions and piston plugs. Assemble HIT-RE-M mixer, extension(s) and appropriately sized piston plug HIT-SZ. Insert piston plug to back of the hole and inject adhesive. During injection the piston plug will be naturally extruded out of the bore hole by the adhesive pressure.
Setting the element	Just before setting an anchor, the drill hole must be free of dust and debris.
twork	Before use, verify that the element is dry and free of oil and other contaminants. Mark and set element to the required embedment depth untill working time twork has elapsed.
	For overhead installation use piston plugs and fix embedded parts with e.g. wedges HIT-OHW.
	Loading the anchor: after required curing time t_{cure} the anchor can be loaded. The applied installation torque shall not exceed T_{max} .

For detailed information on installation see instruction for use given with the package of the product.

Curing time for general conditions

Temperature of the base material	Minimum curing time		
Т	t _{cure}		
-5 °C to -1 °C	168 h		
0 °C to 4 °C	48 h		
5 °C to 9 °C	24 h		
10 °C to 14 °C	16 h		
15 °C to 19 °C	16 h		
20 °C to 24 °C	7 h		
25 °C to 29 °C	6 h		
30 °C to 34 °C	5 h		
35 °C to 39 °C	4,5 h		
40 °C	4 h		

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

Setting details

Setting details

Anchor size			M8	M10	M12	M16	M20
Nominal diameter of drill bit	do	[mm]	14	18	22	28	32
Diameter of element	d	[mm]	12,5	16,5	20,5	25,4	27,6
Effective anchorage and drill hole depth	h _{ef}	[mm]	90	110	125	170	205
Minimum base material thickness	h _{min}	[mm]	120	150	170	230	270
Diameter of clearance hole in the fixture	df	[mm]	9	12	14	18	22
Thread engagement length; min - max	h₅	[mm]	8-20	10-25	12-30	16-40	20-50
Minimum spacing	Smin	[mm]	60	70	90	115	130
Minimum edge distance	Cmin	[mm]	40	45	55	65	90
Critical spacing for splitting failure	Scr,sp		2 C _{cr,sp}				
Critical edge distance for splitting failure ^{a)}	C cr,sp	[mm]	$ \begin{array}{c} 1,0 \cdot h_{ef} \text{ for } h \ / \ h_{ef} \geq 2,0 \\ 4,6 \ h_{ef} - 1,8 \ h \text{for } 2,0 > h \ / \ h_{ef} > 1,3 \\ \end{array} $				
			2,26 h _{ef}	for h / h _{ef} ≤ 1,3	3 +	1,0 h _{ef} 2,26	c _{cr,sp} ∂·h _{ef}
Critical spacing for concrete cone failure	Scr,N		2 c _{cr,N}				
Critical edge distance for concrete cone failure ^{c)}	Ccr,N		1,5 h _{ef}				
Torque moment ^{c)}	T _{max}	[Nm]	10	20	40	80	150
			U.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

a) $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef}: embedment depth)

b) h: base material thickness ($h \ge h_{min}$)

c) The critical edge distance for concrete cone failure depends on the embedment depth h_{ef} and the design bond resistance. The simplified formula given in this table is on the save side.